토목기사 필기 빈출문제(토질역학)-2

728x90

1. 모래지반에 30cm× 30cm의 재하판으로 재하실험을 한 결과 10t/m²의 극한 지지력을 얻었다. 4m× 4m의 기초를 설치할때 기대되는 극한지지력은?

    10t/m² 100t/m²

    133t/m² 154t/m²

 

해설

※점토지반 일경우

 

2. 선행압밀하중을 결정하기 위해서는 압밀시험을 행한 다음 어느 곡선으로부터 구할수 있는가?

    ① 간극비 - 압력(log 눈금)곡선

    압밀계수 - 압력(log 눈금)곡선

    일차 압밀비 - 압력(log 눈금)곡선

    이차 압밀계수 - 압력(log 눈금)곡선

 

해설

선행압밀하중(preconsolidation pressure)은 지반의 과거 최대 압밀하중을 의미하며, 지반의 과거 부하 이력을 판단하는 중요한 지표입니다. 이 값을 결정하기 위해 수행하는 압밀시험 결과를 해석할 때 가장 흔히 사용하는 그래프는 간극비 - 압력(log 눈금)곡선입니다.

간극비 대 로그 압력 그래프에서는 압력이 증가함에 따라 간극비가 감소하는 경향을 보이는데, 선행압밀하중은 이 그래프상에서 간극비의 감소가 갑자기 둔화되는 지점, 즉 곡선의 경사가 변하는 지점에서 찾을 수 있습니다. 이 지점은 토양이 과거에 경험했던 최대 압밀하중을 나타내며, 그 이상의 압력에서 토양의 간극비 감소가 더욱 가팔라지는 특성을 보입니다.

 

3.  Terzaghi는 포화점토에 대한 1차 압밀이론에서 수학적 해를 구하기 위하여 다음과 같은 가정을 하였다. 이 중 옳지 않은 것은?

    흙은 균질하다.

    흙입자와 물의 압축성은 무시한다.

    흙속에서의 물의 이동은 Darcy 법칙을 따른다.

    ④ 투수계수는 압력의 크기에 비례한다.

 

해설

투수계수는 압력의 크기에 비례한다 - 이는 테르자기의 압밀 이론에 반하는 내용입니다. 테르자기의 이론에서는 투수계수가 일정하다고 가정합니다. 투수계수가 압력에 따라 변한다는 가정은 실제 상황에서도 논란의 여지가 있으며, 일반적으로 투수계수는 주어진 토양의 특성에 따라 결정되고, 이는 필연적으로 일정하지는 않지만, 압밀 이론에서는 변하지 않는 값으로 다루어집니다.

 

4.다짐에 대한 다음 사항중 옳지 않은 것은?

    ① 점토분이 많은 흙은 일반적으로 최적함수비가 낮다.

    사질토는 일반적으로 건조밀도가 높다.

    입도배합이 양호한 흙은 일반적으로 최적함수비가 낮다.

    점토분이 많은 흙은 일반적으로 다짐곡선의 기울기가 완만하다.

 

해설

점토분이 많은 흙은 일반적으로 최적함수비가 낮다 - 이 주장은 일반적으로 올바르지 않습니다. 실제로는 점토분이 많은 흙은 더 높은 최적함수비를 가지는 경향이 있습니다. 점토는 물을 보유하는 능력이 높기 때문에 더 많은 물을 필요로 하며, 이는 최적함수비를 높게 만듭니다.

 

사질토는 일반적으로 건조밀도가 높다 - 이는 올바른 설명입니다. 사질토는 큰 입자로 구성되어 있어 잘 다져지면 상대적으로 높은 건조밀도를 가집니다.

 

입도배합이 양호한 흙은 일반적으로 최적함수비가 낮다 - 이는 올바른 설명입니다. 잘 배합된 입도는 공극이 적어 더 적은 물로도 잘 다질 수 있기 때문에 최적함수비가 낮습니다.

 

점토분이 많은 흙은 일반적으로 다짐곡선의 기울기가 완만하다 - 이는 올바른 설명입니다. 점토는 물의 영향을 많이 받으며 물의 양에 따라 밀도가 크게 변하지 않습니다. 이로 인해 다짐곡선의 기울기가 완만합니다.

 

특징
조립토일수록 다짐 곡선은 급하고, 세립토일수록 다짐 곡선은 완만하다.
사질토에서는 최대 건조 밀도가 증가하고, 최적 함수비는 감소한다.
즉 곡선이 직교 좌표의 왼쪽 상방향에 그려지게 된다.
점토분이 많은 흙은 최대 건조 밀도가 감소하고, 최적 함수비는 증가한다.
즉 곡선이 직교 좌표의 오른쪽 하방향에 그려지게 된다.

양입도의 흙에서는 건조밀도가 높고 최적 함수비는 낮다.
즉 곡선이 직교 좌표의 왼쪽 상방향에 그려지게 된다.사질토의 다짐일량이 점질토의 다짐일량보다 크다.최적 함수비보다 약간 건조측에서 전단 강도가 최대가 된다.

최적 함수비보다 약간 습윤측에서 투수 계수가 최소가 된다.
건조측에서 다지면 팽창성이 크고, 최적 함수비에서 다지면 팽창성이 최소이다.
건조측에서 다지면 면모 구조가 되고, 습윤측에서 다지면 이산 구조가 된다.

 

 

5. 어떤 흙의 전단실험결과 C=1.8kg/cm², φ=35, 토립자에 작용하는 수직응력 σ =3.6kg/cm²일 때 전단강도는?

    4.89kg/cm² 4.32kg/cm²

    6.33kg/cm²  3.86kg/cm²

 

해설

728x90

댓글()

토목기사 필기 빈출문제(토질역학)-1

728x90

1. 유효응력에 대한 설명으로 틀린 것은?

    ① 항상 전응력보다는 작은 값이다.

    점토지반의 압밀에 관계되는 응력이다.

    건조한 지반에서는 전응력과 같은 값으로 본다.

    포화된 흙인 경우 전응력에서 간극수압을 뺀 값이다.

해설

1. 특별한 상황을 고려하지 않은 일반적인 경우에는 옳으나, 특정 조건 하에서는 잘못될 수 있습니다. 상향침투 같은 현상에서 간극수압이 음의 값을 가질 수 있으며, 이 경우 유효응력은 전응력보다 클 수 있습니다. 따라서, 이 설명은 상황에 따라 정확하지 않을 수 있습니다.

 

2. 점토지반의 압밀과정에서 유효응력은 중요한 역할을 합니다. 압밀은 유효응력의 증가로 인해 흙 속의 물이 배출되고 흙이 압축되는 과정을 의미합니다.

 

3. 건조한 지반에서는 간극수압이 존재하지 않으므로, 전응력과 유효응력은 같은 값으로 간주됩니다.

 

4. 포화된 흙에서의 유효응력은 전응력에서 간극수압을 뺀 값으로 계산됩니다. 이는 유효응력을 정의하는 기본적인 방식이다.

 

2.포화상태에 있는 흙의 함수비가 40%이고, 비중이 2.60이다. 이 흙의 간극비는?

    0.65 0.065

    ③ 1.04 1.40

 

해설

로 부터

주어진 함수비는 40%이므로, 소수 형태로는 0.40입니다. 비중(G)은 2.60이고, 포화도(S)는 1입니다(완전 포화 상태).

 

e = 0.4 x 2.6 / 1 = 1.04

 

3. Coulomb토압에서 옹벽배면의 지표면 경사가 수평이고, 옹벽배면 벽체의 기울기가 연직인 벽체에서 옹벽과 뒤채움 흙 사이의 벽면마찰각(δ)을 무시할 경우, Coulomb토압과 Rankine토압의 크기를 비교할 때 옳은 것은?

    Rankine토압이 Coulomb토압 보다 크다.

    Coulomb토압이 Rankine토압 보다 크다.

    ③ Rankine토압과 Coulomb토압의 크기는 항상 같다.

    주동토압은 Rankine토압이 더 크고, 수동토압은 Coulomb토압이 더 크다.

 

해설

Rankine 토압 이론은 특정 조건(수평 지표면, 연직 벽, 벽면 마찰 무시) 하에서 지반의 스트레스 상태를 분석하여 토압을 계산합니다. 이 이론은 주어진 조건 하에서 최대 및 최소 토압 상태(주동 토압과 수동 토압)를 예측합니다.

 

Coulomb 토압 이론은 벽의 기울기, 지표면 경사, 벽면 마찰각 등 더 다양한 요소를 고려할 수 있습니다. 그러나 이 경우, 벽면 마찰각을 무시하고, 지표면 경사가 수평이며 벽이 연직이라는 조건에서 Coulomb 토압 이론은 Rankine 토압 이론과 동일한 조건에서 적용됩니다.

 

옹벽과 뒤채움 흙 사이의 벽면 마찰각(δ)을 무시하고, 옹벽 배면의 지표면 경사가 수평이며, 벽체가 연직일 경우, Coulomb 토압 이론과 Rankine 토압 이론은 같은 결과다.

 

4.포화된 점토지반에 성토하중으로 어느 정도 압밀된 후 급속한 파괴가 예상될 때, 이용해야 할 강도정수를 구하는 시험은?

    ① CU-test UU-test

    UC-test CD-test

 

해설

1. 흙 시료를 압밀 과정 없이(즉, Consolidation 과정을 거치지 않고) 배수 없이 전단하는 방식으로 진행됩니다. 이 시험은 배수 조건이 허용되지 않는 급속한 하중 조건이나 파괴 상황을 모사할 때 사용됩니다. 급속한 성토 또는 파괴 시나리오에서는 UU 시험을 통해 얻은 강도정수가 가장 적합

 

2. 흙 시료를 압밀 과정 없이(즉, Consolidation 과정을 거치지 않고) 배수 없이 전단하는 방식으로 진행됩니다. 이 시험은 배수 조건이 허용되지 않는 급속한 하중 조건이나 파괴 상황을 모사할 때 사용됩니다. 급속한 성토 또는 파괴 시나리오에서는 UU 시험을 통해 얻은 강도정수가 가장 적합

 

3. 포화된 시료가 아닌, 일반적으로 점토가 아닌 흙에 대해 사용되는 간단한 압축 강도 시험입니다. 이 시험은 측면에서의 배수나 압력을 허용하지 않으며, 시료의 단순 압축 강도를 측정

 

4. 흙 시료를 먼저 압밀한 다음, 배수 조건 하에서 천천히 전단하는 방식으로 진행됩니다. 이 시험은 장기간에 걸친 하중 조건, 즉 배수가 가능한 상태에서 흙이 변형될 때의 강도를 평가하기 위해 사용

 

5. 현장 도로 토공에서 모래치환법에 의한 흙의 밀도 시험 결과 흙을 파낸 구멍의 체적과 파낸 흙의 질량은 각각 1800cm3, 3950g이었다. 이 흙의 함수비는 11.2%이고, 흙의 비중은 2.65이다. 실내시험으로부터 구한 최대건조밀도가 2.05g/cm³일 때 다짐도는?

    92% 94%

    ③ 96% 98%

 

해설

흙의 습윤단위중량 = 파낸 흙의 질량 / 흙을 파낸 구멍의 체적 = 3950g / 1800cm³ = 2.2g/cm³

흙의 함수비 = 11.2% = 0.112

흙의 건조단위중량 = 습윤단위중량 / (1 + 함수비) = 2.2g/cm³ / (1 + 0.112) = 1.98g/cm³

 

다짐도 = 현장 건조단위중량 / 최대건조단위중량 = 1.98g/cm³ / 2.05g/cm³ = 0.966

728x90

댓글()

2018년 국가직7급 토질역학 16~20번 해설

728x90

 

16. 지반의 미소요소에 그림과 같은 응력이 작용하고 있다면, 수평면과 45° 기울어진 단면 AA에 작용하는 수직응력과 전단응력은? (, Mohr원에서 수직응력의 경우 압축력을 ()로 전단응력의 경우 반시계방향회전을 ()로 표시하며, 응력의 단위는 kN/m²이라 가정한다)

 

수직응력 전단응력

300   100

300       100

100   100

100       100

 

난이도 및 평가

난이도 하,  MohrCoulomb의 파괴이론에서 공식만 잘 뽑아쓰면 된다

해설

수직응력 공식
전단응력공식

 

위 공식으로부터 숫자를 대입하면


17. 점성토 지반의 내부마찰각)30°, 선행압밀압력(Pc)200kN/m², 현재 받고 있는 유효연직응력(P)50kN/m²일 때, 과압밀계수(OCR)를 활용하여 구한 이 점성토 지반의 정지토압계수는?

2.0
1.5
1.0
0.5

난이도 및 평가

난이도 중상,  과압밀비를 이해하고 과압밀비에 따라 지반의 상태를 파악하고 이에따라 정지토압계수를 구하는 것이 달라진다. 그리고 2019년 2020년? 시험에서 과압밀점토일때 정지토압계수를 새롭게 정의했으므로 암기하고 가야한다.

해설


18. 흙의 간극을 물이 아닌 기름이 채우고 있다. 흙의 비중(Gs)2.65, 물의 단위중량(γw)이 10kN/m³ 기름의 단위중량(γoil)은 9kN/m³기름의 포화도(S)는 50%이며 간극비(e) 1일 때, 이 흙의 단위중량은?

① 16.5kN/³
② 16.0kN/³
③ 15.5kN/³
④ 15.0kN/³

 
 
난이도 및 평가

난이도 상,  흙의 3상을 이해하지 못하면 어려운 문제이다.

해설


19. 다짐 시 최적의 다짐상태는 최적함수비보다 함수비가 작은 건조 측에서 또는 최적함수비보다 함수비가 큰 습윤 측에서 도달될 수 있다. 이와 관련하여 점성토의 다짐에 대한 설명으로 옳지 않은 것은?

낮은 압력에서는 최적함수비의 건조 측 압축성이 습윤 측 압축성보다 작다.
② 최적함수비의 건조 측 투수계수가 습윤 측 투수계수보다 작다.
높은 압력에서는 최적함수비의 건조 측 압축성이 습윤 측 압축성보다 크다.
최적함수비의 건조 측 강도가 습윤 측 강도보다 크다.

난이도 및 평가

난이도 중,  기사에서도 자주나오는 문제이고 앞으로도 자주 출제될 문제이니 잘 봐두도록 하

해설

① 낮은 압력에서는 면모구조를 파괴할 압력에 미치지 못하므로 면모구조 압축성이 습윤 측 압축성보다 작다.
② 최적함수비의 건조 측 투수계수가 습윤 측 투수계수보다 크며 그 이유는 건조 측에서는 입자 배열이 불규칙적이므로 물이 통과할 수 있는 공극이 많기 때문이다.
③ 높은 압력에서는 면모구조 사이사이 공극을 더 크게 줄이므로 이산구조보다 압축성이 크다.
④ 면모구조가 이산구조보다 결합력이 크므로 강도가 더 크다.

 


20. 지반 내에서 발생할 수 있는 모세관현상에 대한 설명으로 옳지 않은 것은?

모세관현상의 상승고는 입경이 작을수록 증가한다.
모세관현상이 발생된 구역에서는 부()의 간극수압이 발생하므로, 전응력이 유효응력보다 작다.
③ 모세관현상이 시작되는 자유수면에서의 간극수압은 물의 단위중량×모세관의 상승고이다.
모세관현상이 발생하는 구역이라 할지라도 포화도가 반드시 100%인 것은 아니며, 자유수면으로부터의 높이에 따라 포화도는 변할 수 있다.

 
난이도 및 평가

난이도 , 

해설

모세관현상의 공식은 두개로 이루어지는데.

이로부터

1. 모세관상승고 높이는 입경이 작을수록 증가한다.


2.  모세관현상이 발생하는 경우 수면을 전수두0으로 가정할 경우 부의 간극수압이 발생한다.

3. 자유수면의 간극수압은 0이다.

4. 모세관현상이 발생하였다고 포화된것은 아니다

728x90

댓글()